Copied to
clipboard

G = C3×C22.36C24order 192 = 26·3

Direct product of C3 and C22.36C24

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C22.36C24, C6.1572+ 1+4, C6.1152- 1+4, C4⋊Q811C6, (C4×D4)⋊13C6, (C4×Q8)⋊14C6, C22⋊Q89C6, (D4×C12)⋊42C2, (Q8×C12)⋊30C2, C4⋊D4.9C6, C4.4D49C6, C422C25C6, C42.40(C2×C6), C42⋊C213C6, (C2×C6).362C24, C22.D47C6, C12.278(C4○D4), (C4×C12).281C22, (C2×C12).671C23, (C6×D4).219C22, (C22×C6).97C23, C23.14(C22×C6), C22.36(C23×C6), (C6×Q8).182C22, C2.9(C3×2+ 1+4), C2.7(C3×2- 1+4), (C22×C12).450C22, (C3×C4⋊Q8)⋊32C2, C4⋊C4.70(C2×C6), C2.19(C6×C4○D4), C4.22(C3×C4○D4), (C2×D4).33(C2×C6), C6.238(C2×C4○D4), C22⋊C4.4(C2×C6), (C3×C22⋊Q8)⋊36C2, (C2×Q8).27(C2×C6), (C3×C4.4D4)⋊29C2, (C3×C4⋊D4).19C2, (C22×C4).67(C2×C6), (C2×C4).29(C22×C6), (C3×C42⋊C2)⋊34C2, (C3×C422C2)⋊14C2, (C3×C4⋊C4).249C22, (C3×C22.D4)⋊26C2, (C3×C22⋊C4).150C22, SmallGroup(192,1431)

Series: Derived Chief Lower central Upper central

C1C22 — C3×C22.36C24
C1C2C22C2×C6C22×C6C3×C22⋊C4C3×C4.4D4 — C3×C22.36C24
C1C22 — C3×C22.36C24
C1C2×C6 — C3×C22.36C24

Generators and relations for C3×C22.36C24
 G = < a,b,c,d,e,f,g | a3=b2=c2=d2=f2=1, e2=cb=bc, g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, ede-1=gdg-1=bd=db, fef=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 322 in 216 conjugacy classes, 146 normal (62 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C12, C12, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×C12, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C22×C6, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C422C2, C4⋊Q8, C4×C12, C4×C12, C3×C22⋊C4, C3×C22⋊C4, C3×C4⋊C4, C3×C4⋊C4, C22×C12, C22×C12, C6×D4, C6×D4, C6×Q8, C6×Q8, C22.36C24, C3×C42⋊C2, D4×C12, Q8×C12, C3×C4⋊D4, C3×C22⋊Q8, C3×C22⋊Q8, C3×C22.D4, C3×C4.4D4, C3×C4.4D4, C3×C422C2, C3×C4⋊Q8, C3×C22.36C24
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, C4○D4, C24, C22×C6, C2×C4○D4, 2+ 1+4, 2- 1+4, C3×C4○D4, C23×C6, C22.36C24, C6×C4○D4, C3×2+ 1+4, C3×2- 1+4, C3×C22.36C24

Smallest permutation representation of C3×C22.36C24
On 96 points
Generators in S96
(1 43 19)(2 44 20)(3 41 17)(4 42 18)(5 9 29)(6 10 30)(7 11 31)(8 12 32)(13 33 37)(14 34 38)(15 35 39)(16 36 40)(21 51 45)(22 52 46)(23 49 47)(24 50 48)(25 93 71)(26 94 72)(27 95 69)(28 96 70)(53 75 79)(54 76 80)(55 73 77)(56 74 78)(57 61 83)(58 62 84)(59 63 81)(60 64 82)(65 87 91)(66 88 92)(67 85 89)(68 86 90)
(1 5)(2 6)(3 7)(4 8)(9 43)(10 44)(11 41)(12 42)(13 47)(14 48)(15 45)(16 46)(17 31)(18 32)(19 29)(20 30)(21 35)(22 36)(23 33)(24 34)(25 62)(26 63)(27 64)(28 61)(37 49)(38 50)(39 51)(40 52)(53 66)(54 67)(55 68)(56 65)(57 70)(58 71)(59 72)(60 69)(73 86)(74 87)(75 88)(76 85)(77 90)(78 91)(79 92)(80 89)(81 94)(82 95)(83 96)(84 93)
(1 7)(2 8)(3 5)(4 6)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 29)(18 30)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)(25 64)(26 61)(27 62)(28 63)(37 51)(38 52)(39 49)(40 50)(53 68)(54 65)(55 66)(56 67)(57 72)(58 69)(59 70)(60 71)(73 88)(74 85)(75 86)(76 87)(77 92)(78 89)(79 90)(80 91)(81 96)(82 93)(83 94)(84 95)
(1 74)(2 88)(3 76)(4 86)(5 87)(6 75)(7 85)(8 73)(9 91)(10 79)(11 89)(12 77)(13 95)(14 83)(15 93)(16 81)(17 54)(18 68)(19 56)(20 66)(21 58)(22 72)(23 60)(24 70)(25 39)(26 52)(27 37)(28 50)(29 65)(30 53)(31 67)(32 55)(33 69)(34 57)(35 71)(36 59)(38 61)(40 63)(41 80)(42 90)(43 78)(44 92)(45 84)(46 94)(47 82)(48 96)(49 64)(51 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)
(2 6)(4 8)(10 44)(12 42)(14 48)(16 46)(18 32)(20 30)(22 36)(24 34)(25 64)(26 28)(27 62)(38 50)(40 52)(53 55)(54 65)(56 67)(57 59)(58 69)(60 71)(61 63)(66 68)(70 72)(73 75)(74 85)(76 87)(77 79)(78 89)(80 91)(81 83)(82 93)(84 95)(86 88)(90 92)(94 96)
(1 33 5 23)(2 34 6 24)(3 35 7 21)(4 36 8 22)(9 49 43 37)(10 50 44 38)(11 51 41 39)(12 52 42 40)(13 29 47 19)(14 30 48 20)(15 31 45 17)(16 32 46 18)(25 80 62 89)(26 77 63 90)(27 78 64 91)(28 79 61 92)(53 83 66 96)(54 84 67 93)(55 81 68 94)(56 82 65 95)(57 88 70 75)(58 85 71 76)(59 86 72 73)(60 87 69 74)

G:=sub<Sym(96)| (1,43,19)(2,44,20)(3,41,17)(4,42,18)(5,9,29)(6,10,30)(7,11,31)(8,12,32)(13,33,37)(14,34,38)(15,35,39)(16,36,40)(21,51,45)(22,52,46)(23,49,47)(24,50,48)(25,93,71)(26,94,72)(27,95,69)(28,96,70)(53,75,79)(54,76,80)(55,73,77)(56,74,78)(57,61,83)(58,62,84)(59,63,81)(60,64,82)(65,87,91)(66,88,92)(67,85,89)(68,86,90), (1,5)(2,6)(3,7)(4,8)(9,43)(10,44)(11,41)(12,42)(13,47)(14,48)(15,45)(16,46)(17,31)(18,32)(19,29)(20,30)(21,35)(22,36)(23,33)(24,34)(25,62)(26,63)(27,64)(28,61)(37,49)(38,50)(39,51)(40,52)(53,66)(54,67)(55,68)(56,65)(57,70)(58,71)(59,72)(60,69)(73,86)(74,87)(75,88)(76,85)(77,90)(78,91)(79,92)(80,89)(81,94)(82,95)(83,96)(84,93), (1,7)(2,8)(3,5)(4,6)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,29)(18,30)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,64)(26,61)(27,62)(28,63)(37,51)(38,52)(39,49)(40,50)(53,68)(54,65)(55,66)(56,67)(57,72)(58,69)(59,70)(60,71)(73,88)(74,85)(75,86)(76,87)(77,92)(78,89)(79,90)(80,91)(81,96)(82,93)(83,94)(84,95), (1,74)(2,88)(3,76)(4,86)(5,87)(6,75)(7,85)(8,73)(9,91)(10,79)(11,89)(12,77)(13,95)(14,83)(15,93)(16,81)(17,54)(18,68)(19,56)(20,66)(21,58)(22,72)(23,60)(24,70)(25,39)(26,52)(27,37)(28,50)(29,65)(30,53)(31,67)(32,55)(33,69)(34,57)(35,71)(36,59)(38,61)(40,63)(41,80)(42,90)(43,78)(44,92)(45,84)(46,94)(47,82)(48,96)(49,64)(51,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (2,6)(4,8)(10,44)(12,42)(14,48)(16,46)(18,32)(20,30)(22,36)(24,34)(25,64)(26,28)(27,62)(38,50)(40,52)(53,55)(54,65)(56,67)(57,59)(58,69)(60,71)(61,63)(66,68)(70,72)(73,75)(74,85)(76,87)(77,79)(78,89)(80,91)(81,83)(82,93)(84,95)(86,88)(90,92)(94,96), (1,33,5,23)(2,34,6,24)(3,35,7,21)(4,36,8,22)(9,49,43,37)(10,50,44,38)(11,51,41,39)(12,52,42,40)(13,29,47,19)(14,30,48,20)(15,31,45,17)(16,32,46,18)(25,80,62,89)(26,77,63,90)(27,78,64,91)(28,79,61,92)(53,83,66,96)(54,84,67,93)(55,81,68,94)(56,82,65,95)(57,88,70,75)(58,85,71,76)(59,86,72,73)(60,87,69,74)>;

G:=Group( (1,43,19)(2,44,20)(3,41,17)(4,42,18)(5,9,29)(6,10,30)(7,11,31)(8,12,32)(13,33,37)(14,34,38)(15,35,39)(16,36,40)(21,51,45)(22,52,46)(23,49,47)(24,50,48)(25,93,71)(26,94,72)(27,95,69)(28,96,70)(53,75,79)(54,76,80)(55,73,77)(56,74,78)(57,61,83)(58,62,84)(59,63,81)(60,64,82)(65,87,91)(66,88,92)(67,85,89)(68,86,90), (1,5)(2,6)(3,7)(4,8)(9,43)(10,44)(11,41)(12,42)(13,47)(14,48)(15,45)(16,46)(17,31)(18,32)(19,29)(20,30)(21,35)(22,36)(23,33)(24,34)(25,62)(26,63)(27,64)(28,61)(37,49)(38,50)(39,51)(40,52)(53,66)(54,67)(55,68)(56,65)(57,70)(58,71)(59,72)(60,69)(73,86)(74,87)(75,88)(76,85)(77,90)(78,91)(79,92)(80,89)(81,94)(82,95)(83,96)(84,93), (1,7)(2,8)(3,5)(4,6)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,29)(18,30)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,64)(26,61)(27,62)(28,63)(37,51)(38,52)(39,49)(40,50)(53,68)(54,65)(55,66)(56,67)(57,72)(58,69)(59,70)(60,71)(73,88)(74,85)(75,86)(76,87)(77,92)(78,89)(79,90)(80,91)(81,96)(82,93)(83,94)(84,95), (1,74)(2,88)(3,76)(4,86)(5,87)(6,75)(7,85)(8,73)(9,91)(10,79)(11,89)(12,77)(13,95)(14,83)(15,93)(16,81)(17,54)(18,68)(19,56)(20,66)(21,58)(22,72)(23,60)(24,70)(25,39)(26,52)(27,37)(28,50)(29,65)(30,53)(31,67)(32,55)(33,69)(34,57)(35,71)(36,59)(38,61)(40,63)(41,80)(42,90)(43,78)(44,92)(45,84)(46,94)(47,82)(48,96)(49,64)(51,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (2,6)(4,8)(10,44)(12,42)(14,48)(16,46)(18,32)(20,30)(22,36)(24,34)(25,64)(26,28)(27,62)(38,50)(40,52)(53,55)(54,65)(56,67)(57,59)(58,69)(60,71)(61,63)(66,68)(70,72)(73,75)(74,85)(76,87)(77,79)(78,89)(80,91)(81,83)(82,93)(84,95)(86,88)(90,92)(94,96), (1,33,5,23)(2,34,6,24)(3,35,7,21)(4,36,8,22)(9,49,43,37)(10,50,44,38)(11,51,41,39)(12,52,42,40)(13,29,47,19)(14,30,48,20)(15,31,45,17)(16,32,46,18)(25,80,62,89)(26,77,63,90)(27,78,64,91)(28,79,61,92)(53,83,66,96)(54,84,67,93)(55,81,68,94)(56,82,65,95)(57,88,70,75)(58,85,71,76)(59,86,72,73)(60,87,69,74) );

G=PermutationGroup([[(1,43,19),(2,44,20),(3,41,17),(4,42,18),(5,9,29),(6,10,30),(7,11,31),(8,12,32),(13,33,37),(14,34,38),(15,35,39),(16,36,40),(21,51,45),(22,52,46),(23,49,47),(24,50,48),(25,93,71),(26,94,72),(27,95,69),(28,96,70),(53,75,79),(54,76,80),(55,73,77),(56,74,78),(57,61,83),(58,62,84),(59,63,81),(60,64,82),(65,87,91),(66,88,92),(67,85,89),(68,86,90)], [(1,5),(2,6),(3,7),(4,8),(9,43),(10,44),(11,41),(12,42),(13,47),(14,48),(15,45),(16,46),(17,31),(18,32),(19,29),(20,30),(21,35),(22,36),(23,33),(24,34),(25,62),(26,63),(27,64),(28,61),(37,49),(38,50),(39,51),(40,52),(53,66),(54,67),(55,68),(56,65),(57,70),(58,71),(59,72),(60,69),(73,86),(74,87),(75,88),(76,85),(77,90),(78,91),(79,92),(80,89),(81,94),(82,95),(83,96),(84,93)], [(1,7),(2,8),(3,5),(4,6),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,29),(18,30),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36),(25,64),(26,61),(27,62),(28,63),(37,51),(38,52),(39,49),(40,50),(53,68),(54,65),(55,66),(56,67),(57,72),(58,69),(59,70),(60,71),(73,88),(74,85),(75,86),(76,87),(77,92),(78,89),(79,90),(80,91),(81,96),(82,93),(83,94),(84,95)], [(1,74),(2,88),(3,76),(4,86),(5,87),(6,75),(7,85),(8,73),(9,91),(10,79),(11,89),(12,77),(13,95),(14,83),(15,93),(16,81),(17,54),(18,68),(19,56),(20,66),(21,58),(22,72),(23,60),(24,70),(25,39),(26,52),(27,37),(28,50),(29,65),(30,53),(31,67),(32,55),(33,69),(34,57),(35,71),(36,59),(38,61),(40,63),(41,80),(42,90),(43,78),(44,92),(45,84),(46,94),(47,82),(48,96),(49,64),(51,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96)], [(2,6),(4,8),(10,44),(12,42),(14,48),(16,46),(18,32),(20,30),(22,36),(24,34),(25,64),(26,28),(27,62),(38,50),(40,52),(53,55),(54,65),(56,67),(57,59),(58,69),(60,71),(61,63),(66,68),(70,72),(73,75),(74,85),(76,87),(77,79),(78,89),(80,91),(81,83),(82,93),(84,95),(86,88),(90,92),(94,96)], [(1,33,5,23),(2,34,6,24),(3,35,7,21),(4,36,8,22),(9,49,43,37),(10,50,44,38),(11,51,41,39),(12,52,42,40),(13,29,47,19),(14,30,48,20),(15,31,45,17),(16,32,46,18),(25,80,62,89),(26,77,63,90),(27,78,64,91),(28,79,61,92),(53,83,66,96),(54,84,67,93),(55,81,68,94),(56,82,65,95),(57,88,70,75),(58,85,71,76),(59,86,72,73),(60,87,69,74)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F3A3B4A···4F4G···4O6A···6F6G···6L12A···12L12M···12AD
order1222222334···44···46···66···612···1212···12
size1111444112···24···41···14···42···24···4

66 irreducible representations

dim11111111111111111111224444
type+++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C3C6C6C6C6C6C6C6C6C6C4○D4C3×C4○D42+ 1+42- 1+4C3×2+ 1+4C3×2- 1+4
kernelC3×C22.36C24C3×C42⋊C2D4×C12Q8×C12C3×C4⋊D4C3×C22⋊Q8C3×C22.D4C3×C4.4D4C3×C422C2C3×C4⋊Q8C22.36C24C42⋊C2C4×D4C4×Q8C4⋊D4C22⋊Q8C22.D4C4.4D4C422C2C4⋊Q8C12C4C6C6C2C2
# reps11111323212222264642481122

Matrix representation of C3×C22.36C24 in GL6(𝔽13)

300000
030000
001000
000100
000010
000001
,
100000
010000
0012000
0001200
0000120
0000012
,
1200000
0120000
001000
000100
000010
000001
,
1110000
0120000
0011600
006200
0010927
0093711
,
800000
080000
005020
000502
000080
000008
,
100000
1120000
001000
000100
0080120
0008012
,
100000
010000
000100
0012000
000001
0000120

G:=sub<GL(6,GF(13))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,11,12,0,0,0,0,0,0,11,6,10,9,0,0,6,2,9,3,0,0,0,0,2,7,0,0,0,0,7,11],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,2,0,8,0,0,0,0,2,0,8],[1,1,0,0,0,0,0,12,0,0,0,0,0,0,1,0,8,0,0,0,0,1,0,8,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0] >;

C3×C22.36C24 in GAP, Magma, Sage, TeX

C_3\times C_2^2._{36}C_2^4
% in TeX

G:=Group("C3xC2^2.36C2^4");
// GroupNames label

G:=SmallGroup(192,1431);
// by ID

G=gap.SmallGroup(192,1431);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,701,1016,2102,555,1571,192]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=f^2=1,e^2=c*b=b*c,g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*d*e^-1=g*d*g^-1=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽